Course Summary

CS 598 DH

What is this course about?

Use cryptography to run computer programs on "encrypted" data.

By doing so, we can solve problems while keeping the underlying data private.

What is this course not about?

classic cryptography setting

Privacy Authenticity

Secure Auctions

Privacy-preserving studies

Privacy-preserving advertising
Privacy-preserving analytics (Secure Machine Learning)

Financial Fraud Detection

...and much more

"No efficient algorithm can tell these two things apart"

Three notions of "hard to tell apart"
$X \equiv Y \quad$ Identically distributed
$X \approx Y \quad$ Statistically close As we increase a parameter, the distributions quickly become close together.
$X \stackrel{c}{=} Y \quad$ Indistinguishable
As we increase a parameter, it quickly becomes difficult for programs to tell the distributions apart.

Two-Party Semi-Honest Security

Let f be a functionality. We say that a protocol Π securely computes f in the presence of a semi-honest adversary if for each party $i \in\{0,1\}$ there exists a polynomial time simulator \mathcal{S}_{i} such that for all inputs x_{0}, x_{1} :

$$
\begin{gathered}
\left\{\operatorname{View}_{i}^{\Pi}\left(x_{0}, x_{1}\right), \operatorname{Output}^{\Pi}\left(x_{0}, x_{1}\right)\right\} \\
\stackrel{c}{=} \\
\left\{\mathcal{S}_{i}\left(x_{i}, y_{i}\right),\left(y_{0}, y_{1}\right) \mid\left(y_{0}, y_{1}\right) \leftarrow f\left(x_{0}, x_{1}\right)\right\}
\end{gathered}
$$

m_{0}, m_{1}

$$
\begin{aligned}
& a \stackrel{\$}{\gtrless} \mathbb{Z}_{q} \\
& h_{b} \leftarrow g^{a} \\
& h_{1-b} \stackrel{\Phi}{\leftarrow} G
\end{aligned}
$$

$$
h_{0}, h_{1}
$$

Sender

$$
\begin{aligned}
& r_{0} \stackrel{\stackrel{\leftrightarrow}{\leftarrow} \mathbb{Z}_{q}}{\stackrel{\&}{\leftarrow}} \begin{array}{l}
\mathbb{Z}_{q}
\end{array}
\end{aligned}
$$

Receiver

$$
\frac{h_{b}^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}=\frac{\left(g^{a}\right)^{r_{b}} \cdot m_{b}}{\left(g^{r_{b}}\right)^{a}}=\frac{g^{a \cdot r_{b}} \cdot m_{b}}{g^{a \cdot r_{b}}}=m_{b}
$$

$\xrightarrow[\stackrel{y(x, y)}{x}]{\stackrel{y}{\longrightarrow}}$
 x
 Ideal World

 Third Party

GMW Protocol
 Hint: Lots of OT

Real World

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

$$
r \stackrel{\$}{\leftarrow}\{0,1\} \quad s \stackrel{\$}{\leftarrow}\{0,1\}
$$

$$
\begin{gathered}
\left\langle r \oplus\left(s \oplus x_{1} \wedge y_{0}\right) \oplus\left(x_{0} \wedge y_{0}\right), s \oplus\left(r \oplus x_{0} \wedge y_{1}\right) \oplus\left(x_{1} \wedge y_{1}\right)\right\rangle \\
=[x \wedge y]
\end{gathered}
$$

In GMW, Number of protocol rounds scales with multiplicative depth of C

Our protocol's efficiency is fundamentally bounded by the speed of light

Pseudorandom Function (PRF)

A function family F is considered pseudorandom if the following indistinguishability holds

```
Ideal:
Real:
Ideal:
C}\quadlookup(m)
    lookup(m):
        return F(k,m)
if m\not\inT:
    T[m]}\stackrel{&}{&}{0,1\mp@subsup{}}{}{\mathrm{ out}
    return T[m]
"If you don't know the key, \(F\) looks random"
```


Malicious Security

3

A protocol Π securely realizes a functionality f in the presence of a malicious adversary if for every real-world adversary \mathscr{A} corrupting party i, there exists an ideal-world adversary \mathcal{S}_{i} (a simulator) such that for all inputs x, y the following holds:

Ensemble of outputs of each party

What can go in terms of outcomes?

Cause honest party to output wrong answer
Learn too much information about other party's input
Prevent honest party from learning output

Malicious security ideal-world execution

honest party outputs

$$
f\left(x, y^{\prime}\right)
$$

adversary outputs...?
whatever it wants

Commitment Scheme

Hiding

I am confident you cannot open the box without the key

You are confident I cannot tamper with the content of the box Binding

$$
f(\cdot)=\{r \mid r \stackrel{\$}{\gtrless}\{0,1\}\}
$$

$$
\begin{aligned}
& b_{0} \stackrel{\$}{\leftarrow}\{0,1\} \\
& r \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}
\end{aligned}
$$

$$
b_{0} \oplus b_{1}
$$

$$
b_{1} \stackrel{\$}{\leftarrow}\{0,1\}
$$

What if $b_{0} \oplus b_{1} \neq s$?
Try again!!

What is a zero-knowledge proof?

Completeness: If $x \in \mathscr{L}$ and if \mathbf{P} and \mathbf{V} are honest, then \mathbf{V} accepts the proof (except with negligible probability) "P can prove true things"
Soundness: If $x \notin \mathscr{L}$, even malicious \mathbf{P} cannot cause honest \mathbf{V} to accept the proof
"P cannot prove false things"
Zero Knowledge: "V learns nothing except that the thing is true"

Graph 3-Coloring

ZK Proof system for 3-colorability

Statement: a graph
 "this graph is 3colorable"

Witness: a coloring

Basic cryptographic tool: Commitments

Setting

GMW Compiler

General-Purpose Tools

GMW Protocol
Multi-party
Multi-round

Garbled Circuit
Constant Round
Two Party

Primitives

Oblivious Transfer
Pseudorandom functions/encryption
Commitments

Zero Knowledge from Garbled Circuits

Verifier Garbler

ZK from MPC in the Head

Fiat Shamir Heuristic

How To Prove Yourself:
Practical Solutions to Identification
Signature Problem
 he Weinmurn hitetute of sciencic
bstract.

Public coin ZK can be made non-interactive

Simple idea: P can choose the challenge itself

Cryptographic hash function (e.g. SHA 256)

Formally, a random oracle

challenge $=\mathrm{H}$ (commitment)

Why can't we simulate G?

G can encrypt each gate freely

Garbler

E has no way to tell if gate it correctly garbled
$\operatorname{Enc}\left(K_{a}^{0}, \operatorname{Enc}\left(K_{b}^{0}, K_{c}^{0}\right)\right)$
$\operatorname{Enc}\left(K_{a}^{0}, \operatorname{Enc}\left(K_{b}^{1}, K_{c}^{0}\right)\right)$
$\operatorname{Enc}\left(K_{a}^{1}, \operatorname{Enc}\left(K_{b}^{0}, K_{c}^{0}\right)\right)$
$\operatorname{Enc}\left(K_{a}^{1}, \operatorname{Enc}\left(K_{b}^{1}, K_{c}^{1}\right)\right)$

Cut and Choose

If all opened GC are well-formed, parties continue

random access machine

ORAM Lower Bound

Natural question: How low can we go in terms of overhead?

Yes, There is an Oblivious RAM Lower Bound!
Kasper Green Larsen* and Jesper Buus Nielsen** Computer Scienco. Aarhus University
Computer Science \& DIGIT, Aarhus University

Abstract. An Oblivious RAM (ORAM) introduced by Goldreich and
Ostrovky [JACM'96] is a (possibly randomized) RAM, for which the memory access pattern reveals no information about the operations per-
formed. The main performance metric of an ORAM is the band formed. The main performance metric of an ORAM is the bandwidth
overhead, i.e., the muttipicative factor extra memory blocks that must be accessed to hide the operation sequence. In their seminal paper introducing the ORAM, Goldreich and Ostrovsky proved an amortized
$\Omega(l \mathrm{n})$ bandwidt $\Omega(\mathrm{Ig} n)$ bandwer bunctical
n. Their $l o w e r ~ b o u n d ~ i s ~ v e r y ~ s t r o n g ~ i n ~ t h e ~ s e n s e ~ t h a t ~ i t ~ a p p l i e s ~ t o ~ t h e ~$ "ofline" setting in which the ORAM knows the entire sequence of operHowever, as pointed out by Boyle and Naor [ITCS'16] in the paper "Is there an oblivious RAM lower bound?", there are two caveats with the Lower bound of Gladreich and Ostrovsky: (1) it only applies to "balls
in bins" algorithms, i.e, algorithms where the ORAM May only shuffe blocks around and not apply any sophisticated encoding of the data,
and (2), it only applies to statistically secure constructions. Boyle and and (2), it only applies to statistically secure constructions. Boyle and
Naor showed that removing the "ralls in bins" assumption would result
in Naor showed that removing for sorting circuits, a long standing open
in super linear lower bound for
problem in circuit complexity. As a way to circumventing this barrier, problem in circuit complexity. As a way to circumventing this aritir
they also proposed a notion of an "online" ORAM, which is an ORAM
竍 they also proposed a even if the operations artive in an online manner.
that remins secure
They argued that most known ORAM constructions work in the online They argued that most known ORAM constructions work in the onime
setting a well
Our contribution is an $\Omega(\lg n)$ lower bound on the bandwidth overhead Of any online ORAM, ven if we require only computational security and arlow arbitrary reperesentations of data, thus greatly ystrengthening the
lower bound of Goldreich and Ostrovky in the online setting. Our lower

Fact (informal): Any secure ORAM must incur overhead at least $\Omega(\log n)$

Combines two concepts:

- All access patterns should look the same to the server
- Certain access patterns will force the client to save its data on the server, then retrieve it later

OT Extension

In MPC (e.g., GMW), we need lots of short OTs Can we turn a few OTs into a lot of OTs?
λ base OTs
n extended OTs

Public key
Symmetric key

R

Distributed Point Function

$$
f \in \mathscr{F}
$$

$$
\operatorname{point}(i, x)= \begin{cases}1 & \text { if } x=i \\ 0 & \text { otherwise }\end{cases}
$$

Private Information Retrieval

Client wishes to privately query one element from a large database

Special case of MPC "Just use MPC"

Because it is a special case, we can hope for much more efficiency

Batched Oblivious PRF

Essentially batched 1-out-of-N OT

$x 0$	$F(k 0, x 0)$	0	$k 0$
$x 1$	$F(k 1, x 1)$	1	$k 1$
$x 2$	$F(k 2, x 2)$	2	$k 2$
$x 3$	$F(k 3, x 3)$	3	$k 3$
$x 4$	$F(k 4, x 4)$	4	$k 4$
$x 5$	$F(k 5, x 5)$	5	$k 5$

bins

$F(k 0, B) F(k 2, B) F(k 1, C) F(k 8, C) F(k 4, D) . .$.

Setting

Semi-honest Security

Malicious Security
Garbled Circuit
Constant Round Two Party

Primitives

Oblivious Transfer
Pseudorandom generators/functions/encryption
Commitments
ORAM

