
Course Summary
CS 598 DH

2

What is this course about?

Use cryptography to run computer
programs on “encrypted” data.

By doing so, we can solve
problems while keeping the

underlying data private.

Privacy

Authenticity

3

What is this course not about?
classic cryptography setting

4

Secure Auctions

Privacy-preserving advertising

Privacy-preserving studies

Privacy-preserving analytics

 (Secure Machine Learning)
Financial Fraud Detection
…and much more

Crypto
Magicx ∧ y

∧

5

x ∧ y

x y

Real

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Ideal

ViewΠ
Bob(x, y) = { y, m0, m1, ... }

These should “look the same”
6

Simulator

ViewΠ
Bob(x, y) = { y, m0, m1, ... }

7

“No efficient algorithm can tell these two things apart”

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Three notions of “hard to tell apart”

Identically distributed

Statistically close

Indistinguishable

As we increase a parameter, the distributions quickly
become close together.

As we increase a parameter, it quickly becomes
difficult for programs to tell the distributions apart.

X ≡ Y

X ≈ Y

X c= Y

Two-Party Semi-Honest Security

{ViewΠ
i (x0, x1), OutputΠ(x0, x1)}

8

{𝒮i(xi, yi), (y0, y1) | (y0, y1) ← f(x0, x1)}

c=

Let be a functionality. We say that a protocol securely
computes in the presence of a semi-honest adversary if
for each party there exists a polynomial time

simulator such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

1-out-of-2
Oblivious
Transfer

m0, m1 b ∈ {0,1}

mb⊥

9

Sender Receiver

Sender Receiver

a $← ℤq

hb ← ga

h1−b
$← G

 h0, h1

 r0
$← ℤq

r1
$← ℤq

 gr0

 hr0
0 ⋅ m0

 gr1

 hr1
1 ⋅ m1

m0, m1 b

hrb

b ⋅ mb

(grb)a

hrb

b ⋅ mb

(grb)a =
(ga)rb ⋅ mb

(grb)a =
ga⋅rb ⋅ mb

ga⋅rb
= mb

10

x y

x y

f(x, y) f(x, y)
Trusted

Third PartyIdeal World

Real World

GMW Protocol
Hint: Lots of OT

11

12

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

r $← {0,1} s $← {0,1}

OT
r, r ⊕ x0 y1

r ⊕ (x0 ∧ y1)

OT
y0

s ⊕ (x1 ∧ y0)

s, s ⊕ x1

⟨r ⊕ (s ⊕ x1 ∧ y0) ⊕ (x0 ∧ y0), s ⊕ (r ⊕ x0 ∧ y1) ⊕ (x1 ∧ y1)⟩

= [x ∧ y]

In GMW, Number of protocol rounds
scales with multiplicative depth of C

Our protocol’s efficiency is
fundamentally bounded by
the speed of light

Pseudorandom Function (PRF)

A function family is considered pseudorandom if
the following indistinguishability holds

F

“If you don’t know the key, looks random”F
14

Real:

 lookup():
 return

k $← {0,1}λ

m
F(k, m)

Ideal:

 lookup():
 if :

 return

T ← EmptyMap

m
m ∉ T

T[m] $← {0,1}out

T[m]

c=

15

⊕

⊕
∧

Garbler Evaluator

The output is 1

…
A protocol securely realizes a functionality in the presence of

a malicious adversary if for every real-world adversary
corrupting party , there exists an ideal-world adversary (a

simulator) such that for all inputs the following holds:

Π f
𝒜

i 𝒮i
x, y

RealΠ𝒜(x, y) ≈ Idealf
𝒮i

(x, y)

Ensemble of outputs of each party

Malicious Security

16

17

…
What can go in terms of outcomes?

Cause honest party to output wrong answer

Learn too much information about other party’s input

Prevent honest party from learning output

x Trusted
Third Party

Malicious security ideal-world execution

y

x continue, y′

f(x, y′)

continuef(x, y′)

honest party outputs
f(x, y′)

adversary outputs… ?
whatever it wants

18

19

Commitment Scheme

I am confident you cannot open the box without the key

Hiding

You are confident I cannot tamper with the content of the box
Binding

20

f(⋅) = { r | r $← {0,1} }

b0
$← {0,1} b1

$← {0,1}

r $← {0,1}λ
c = Com(b0; r)

b1

b0, r
c ?= Com(b0; r)

abort b0 ⊕ b1

b0 ⊕ b1

(b1 = 0 if Alice aborts)

21

b0
$← {0,1} b1

$← {0,1}

r $← {0,1}λ
c = Com(b0; r)

b1

b0, r
c ?= Com(b0; r)

abort b0 ⊕ b1
b0 ⊕ b1

continue; ∅

b0
$← {0,1}

r $← {0,1}λ

c = Com(b0; r)

b1

What if ?b0 ⊕ b1 ≠ s

s

s $← {0,1}

b′ 0
$← {0,1}

r′

$← {0,1}λ

Try again!!

What is a zero-knowledge proof?

V P

Completeness: If and if P and V are honest, then V accepts
the proof (except with negligible probability)

x ∈ ℒ

“P can prove true things”
Soundness: If , even malicious P cannot cause honest V to

accept the proof
x ∉ ℒ

“P cannot prove false things”

Zero Knowledge: “V learns nothing except that the thing is true”
22

Graph 3-Coloring

ZK Proof system for 3-colorability

Statement: a graph
“this graph is 3-

colorable”

Witness: a coloring

Basic cryptographic
tool: Commitments

23

24

Setting General-Purpose Tools

Primitives
Oblivious Transfer
Pseudorandom functions/encryption
Commitments

GMW Protocol
Multi-party
Multi-round

Semi-honest Security

Malicious Security

Zero Knowledge

GMW
Compiler

Garbled Circuit
Constant Round
Two Party

25

Zero Knowledge from Garbled Circuits

Garbler
ProverVerifier

Evaluator

Ĉ C

OT x
Input keys x

Input keys for
witnessĈ

Com(, r)
All input keys

, r

P V

ZK from MPC in the Head

26

com(,r0)t0

com(,r1)t1

com(,r2)t2

t0 t2r0 r2

“Open parties 0 and 2”

Soundness?

To cheat, P must corrupt
at least one edge (i.e.,
one party receives a

message that was not
sent by the other)

By opening an edge, V
has probability at least
1/3 to catch cheating P

Repeat to obtain desired
soundness

P

Fiat Shamir Heuristic

27

commitment

Public coin ZK can be
made non-interactive

Simple idea: P can choose
the challenge itself

challenge = H(commitment)

response

Cryptographic hash function
(e.g. SHA 256)

Formally, a random oracle

28

Enc(K0
a , Enc(K0

b , K0
c))

Enc(K0
a , Enc(K1

b , K0
c))

Enc(K1
a , Enc(K0

b , K0
c))

Enc(K1
a , Enc(K1

b , K1
c))

Garbler

Why can’t we simulate G?

G can encrypt each gate freely

E has no way to tell if gate it
correctly garbled

29

Cut and Choose

Ĉ

Garbler Evaluator

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ If all opened GC are
well-formed, parties
continue

G E
Δ $← {0,1}λ

ℱpre

Doubly authenticated multiplication triples

Garbled Circuit

Set E’s input

Set G’s input
Garble Evaluate

μ $← {0,1}λ

⨁
∧

CPU

random access machine

Main Memory

Oblivious RAM Protocol

31

012 345 678 d0d1 d2

access(7)

5

F(Ks,2) F(Ks, d1) F(Ks,5) F(Ks,8) F(Ks, d2) F(Ks,4) F(Ks,7) F(Ks,3) F(Ks, d0) F(Ks, d1) F(Ks, d0) F(Ks, d6)

7

S C

F(Ks, d0)

d0

7

S C

5

3 2 0

4

1 6

7

…

…
Logical
address Leaf

0 10

1 5

2 7

… …

Position Map

Path Invariant: Each
node is assigned a
uniformly random leaf

ORAM Lower Bound

Natural question: How low can we go in terms of overhead?

Fact (informal): Any secure ORAM must
incur overhead at least Ω(log n)

Combines two concepts:

• All access patterns should look the

same to the server

• Certain access patterns will force the

client to save its data on the server,
then retrieve it later

 base OTsλ

Public key Symmetric key

 extended OTsn

OT Extension

In MPC (e.g., GMW), we need lots of short OTs
Can we turn a few OTs into a lot of OTs?

1 1 0 1 1 0 0 1
1 0 1 1 0 1 0 0
0 1 1 0 0 0 1 1
1 1 0 1 1 0 1 1
0 0 1 0 1 0 0 1
1 0 1 0 1 0 0 0
1 1 1 1 1 0 1 0
1 1 0 0 0 1 0 1
… … … … … … … …

1
0
0
0
1
0
1
1
…

R

1 0 0 1 1 1 1 1
1 0 1 1 0 1 0 0
0 1 1 0 0 0 1 1
1 1 0 1 1 0 1 1
0 1 1 0 1 1 1 1
1 0 1 0 1 0 0 0
1 0 1 1 1 1 0 0
1 0 0 0 0 0 1 1
… … … … … … … …

0 1 0 0 0 1 1 0

r

Δ

S

q

t

Correlated OT
rΔ

qi qi ⊕ riΔ

f0

f

f1

Gen

Eval(f0, x)

Eval(f1, x)

f0(x)

f1(x)

f(x)⊕

f ∈ ℱ

Distributed Point Function

point0(i, ⋅)

point1(i, ⋅)

point(i, x) = {1 if x = i
0 otherwise

37

Private Information Retrieval

x0

x1

x2…
xn−1

PIR

i

xi ?

Client wishes to privately
query one element from a
large database

38

point0(i, ⋅)

point1(i, ⋅)

 bits≈ λ ⋅ log n

 bits≈ λ ⋅ log n

1 record

1 record

39

40

PSI

{13, 17, 25, 45, 52, 101} {1, 4, 17, 19, 21, 45, 100}

{17,45}

Special case of MPC

“Just use MPC”

Because it is a special
case, we can hope for
much more efficiency

Batched Oblivious PRF

x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

F(k0, x0)

F(k1, x1)

F(k2, x2)

F(k3, x3)

F(k4, x4)

F(k5, x5)

k0

k1

k2

k3

k4

k5

Essentially batched 1-out-of-N OT

A

C

D

F

B

C

D

E

F(k1,A)

F(k3,F)

k0
k1
k2
k3
k4
k5
k6
k7
k8
k9

F(k4,D)

F(k8,C)

F(k0,B) F(k2,B) F(k1,C) F(k8,C) F(k4,D) …

bins

43

Setting General-Purpose Tools

Primitives
Oblivious Transfer
Pseudorandom generators/functions/encryption
Commitments

GMW Protocol
Multi-party
Multi-round

Semi-honest Security

Malicious Security

Zero Knowledge

Garbled Circuit
Constant Round
Two Party

ORAM

Secure Computation

44

This Class

Cryptography

Secure Computation

45

This Class

Computer Science

Cryptography

Secure Computation

46

This Class

