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What is this course about?

Use cryptography to run computer
programs on “encrypted” data.

By doing so, we can solve
problems while keeping the
underlying data private.



What is this course not about?
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ABSTRACT

Federated Learning enadles a population of cllents, working with a
trasted server to colaboratively learn a shased michone learning
model while keeping each client’s data within its own leca’ systems.
This reduces the risk of exposing sensitive data, but it 15 stil pos-
sible to reverse engineer insformation zboat & clent’s private data
scd [t comumuwsca od mudel panaccters, Most [ederated leanmg
systems therefore use differential privacy ‘o introduce nose to the
perameters This adds uncertainty to any attempt to reveal private
clew: Jdeta, bul also iedaces the acvcuracy of U shared meodel, lin-
iting the useful scale of privacy-preserving noise A system can
further redace the coordinating scrver’s abilty to ~ccover private
clent information, without additonal accuracy loss, by also inclad
ing sroure mudtiparty compufation. An approach combiring both
techniques is especiclly relevant to financial firme 2& it allows new
possbilities for collsborative leaming withoat exposing eensitive
cbent data. This could preduse more accurate models for impor-
tant tasks like optimal trade execution, credit orgination, or fraud
detection. The key contributions of this paper are: We present a
privacy-preserving federated learning protocol 1o @ non-spesialist
andience, demaoncteste it ising logistic regrezcion an a real-warld
credit card frand data set, and evaluate it ising an open-source
simulation plstform which we have acapred for the development

of federated leaming systems
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1 INTRODUCTION

Mcdem financial frms routinely aeed to conduct analysis of large
data sels stored wcross mutiple servers or devices. A typical ne-
sponse is to combine these Jara sets into a single ceatral database,
but this approach Introduces a number of privacy challenges: The
inditution may not have appropriate sutborily or peomission o
tansles locally stured indurmacion, the owner of the data usay not
want it sharzd, and centralization of the data may worsen the po-
tential consequences of a data breach.

“or example, the nwbie app aisty pr colleded persvia data from
its asers’ ohones and vploaded thisinformationto a central catabase.
Sccurity rescarchers gained ncacas to the databasc and obtancd the
names, email addresscs, pasewerds, and ether sensitive iaformaticon
of 31 nillion users of the Androad version of the app. Such incidents
highlight the ricks and challenges associated with centralized data
solatiens. [5]

n this sestion, we motivate our approach while providing an
extensive nen-technical overview of the underlying techniques.

1.1 Federated Learning

One approach 1o mitigate the mentioned privacy concems is 10
analyze the multiple data set: sepacately and share oanly the re-
sulting irsights from each analys's. This approach §5 realized ina
recently-introduced technijue called federated analysis, [2] Fed-
erated learning, already adopted by large compantes like Google,
allows users Lo shure insghils (verhaps the pamanwters of o trzined
wwdel) o the cate on thieir laptops or mobile devives withowt
ever saanng the dataitsclf, typically as fol.ows:

1. Userstrain a local model on their individual data,

2. Each user s:ncs their model weights to a trustec server.

3. The server comprtes an average-waght shared model

4. The shared mcdel is returned to all of the users,

5. Usersretrain a local model sterting from the sharec model.

“or instance. email providers could use federated Jeaming 1o
reduce the amount of spam their customers receive. Insteed of
each provider using its own spam filter trained from its customers’
reported spam email, the providers could combine their models to
create a shared spam-detection mechanism, without sharing their
individual custcmers' reported spam emails. For a survey of recent
advances in federztec learning see Kairouz etal. [13]

t is stl possible, however, for a malicious party to potentially
compromise the privacy of the individuzl users by inferring details
of a trining data set from the trained model's weights or parame-
ters [16, 19]. It is importan! to protect sensitive user information
while still providing highly accurate inferences.
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Secure Auctions

Privacy-preserving studies
Privacy-preserving advertising

Privacy-preserving analytics
(Secure Machine Learning)

Financial Fraud Detection

...and much more






Simulator

Real
> -
Viewgob(x, y) =1y, my,m,... | Output%i;’g(x, y) =1y, mym,.. }

These should “look the same”



“No efficient algorithm can tell these two things apart”

ﬁ
o 8% @
Viewg()b(x, y) =1y, mym,... | Output Ob(x, y) =1y, my, My, ...

Three notions of “hard to tell apart”

X =Y Identically distributed

X ~ Y  Statistically close

&

X =Y Indistinguishable



Two-Party Semi-Honest Security

Let f be a functionality. We say that a protocol 11 securely
computes f in the presence of a semi-honest adversary if
for each party i € {0,1} there exists a polynomial time
simulator &'; such that for all inputs Xy, X,

{Viewin(xo, X1), OutputH(xO, X))}
C

1S ¥ 0o, Y1) | Oos Y1) fxp, X1) )
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Oblivious
Transfer

Sender Recelver




Recelver
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. fx, ) ! X, y)

Trusted
\dea\ W‘“‘ Third Party

GMW Protocol
Hint: Lots of OT

Real World



How do we AND two shares? @
Goal: given gate input wires holding [x], | v],

put [x A y] on the gate output ’ .
s & 0.1
ﬁ r P (xO A yl)

(rd (s D x; Ayy) D (g Ay, s @ (rd xy Ay @ (x; Ayy))
=[x Ayl
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In GMW, Number of protocol rounds
scales with multiplicative depth of C

Our protocol’s efficiency is
. “ : fundamentally bounded by
the speed of light




Pseudorandom Function (PRF)

A function family I is considered pseudorandom if
the following indistinguishability holds

Ideal:
Real: T <~ EmptyMap
k& (0.1} .
— Lookup(m):
Lookup(m): if megT:
return F(k,m) Tim] < {0,1)°u

return T[m)

“If you don’t know the key, I looks random”



e The output is 1
‘ -

Garbler ~ Evaluator

8
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Malicious Security

—
c S @ O2ESeé

A protocol 11 securely realizes a functionality f in the presence of
a malicious adversary if for every real-world adversary f
corrupting party 1, there exists an ideal-world adversary & ; (a

simulator) such that for all inputs x, y the following holds:

Realg(x, y) & Idealf;i(x, y)

N\ 7/

Ensemble of outputs of each party




What can go in terms of outcomes”?

Cause honest party to output wrong answer
Learn too much information about other party’s input

Prevent honest party from learning output x

17



Malicious security ideal-world execution

feeyy  Third Party

_

' continue

honest party outputs adversary outputs... ?

Jx,y) whatever it wants



Commitment Scheme

| am confident you cannot open the box without the key

L |

You are confident | cannot tamper with the content of the box

Binding
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fl-y={r|r<{0,1}} @
~ 2,

$
by < {0,1} = Com(by; r)

C
r e (0,1} T '

v

bo@bl

b, < {01}

C = Com(by; r)

£ X

abort by @ b,

(b, = 0 If Alice aborts)



Whatif by D b, # 5 ?

Try again!!
I

co“‘@ y

C

r<—{01}’1

{01}
r <—{01}ﬂ
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What is a zero-knowledge proof?

H.

-

_ s

Completeness: If x € £ and if P and V are honest, then V accepts
the proof (except with negligible probability)
“P can prove true things”

Soundness: If x € £, even malicious P cannot cause honest V to

accept the proof
“P cannot prove false things”

Zero Knowledge: “V learns nothing except that the thing is true”

22



Graph 3-Coloring
@

ZK Proof system for 3-colorability

Statement: a graph

7
N/ V7 o
B/ -

@
Basic cryptographic
tool: Commitment
® ® ool: Co itments
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Setting General-Purpose Tools
GMW Protocol

Semi-honest Security

GMW Multi-party
Compiler Multi-round
Malicious Security
/ Garbled Circuit
Zero Knowledge Constant Round
Two Party

Primitives

Oblivious Transfer
Pseudorandom functions/encryption
Commitments

24



Zero Knowledge from Garbled Circuits

Inpu H@ys
Verifier OT

— 5 Q

Prover

Input keys for

é' witness

ﬁ
—

Com( ©, r)
All iInput keys




ZK from MPC in the Head

Soundness?

To cheat, P must corrupt
at least one edge

A

com(E.7,)

A

com(jZl.7 )

N

com(jzal.7»)

“Open parties 0 and 2”

By opening an edge, V
has probability at least a .
1/3 to catch cheating P P 0 2

Repeat to obtain desired I

soundness 26
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How To Prove Yourself:
Practical Solutions to Identification
and Signature Problems

Amos Fiat and Adi Shamir
Department of Applied Mathomatles
The Weizmann Institute of Science
Rehavet 76100, farael

Abhstract.

Tr this paper we describe simple identifcation and sigrnature schemes which enable any user

to prove Lis identity and the sutheaticity of his messages o any olther user without shased

r pudllc keys, The scharmes are provably sesure agninat asy knawn ar chesan memsage attack

if factoring is difcn’t, and typical implementations require caly 1% tc 4% of the aumber of

mwuular mulliplications required by the RSA scheme. Due to thel= simplicity, secusity and speed,

these schemes are ideally smited for microprocessor-based devices such as smart cards, persanal
cvaaputers, aad remole conirol systems,

1. Introduciion

Creating urforgeable 1D cards based on the emerging techoology of zmart cards is an -
portant preblem with numercns commercial and militesy applications. The problem becorres
particulazly challenging when the two partizs (the praver A and the verifier B) are adversarles,
and we want to make it impossible for £ lo cosrepresent bimsed as A even after he wilnesses and
verifies arditrarily many proofs of identity generated by A Typical applications include passparis
(which are often inspected and photocopied by Lostile governments) . credil cards (whose 2umbers
can be copicd ‘0 blank cards or usad over the phane), camputer passwerds [whick are vulaerable
to hackers and wire tappwss) sad wilitsry command snd conirol syelems [whose lecminals oy
fall into enemy hands). We distingulsh between three levels of pratsetiorn

L) Authentication schemes A can prove lo B thal he 5 A, but somecne else cancol prove

tc B that he is A.

2} Jentification schemes: A can prove to 2 that he is A, but J cannot prove to someone
else that he is A,

3] Signature sehemes: A ean prove te B that he is A, but B canrat ssove even to himaelf
that he is A,

Authcnticazion schemes ars usafi| anly agairst external thraats when A nnd B cooperate.
The distinction between identilication and signature schieanes & subtle, and manilests 1eall casinly
wher the proaf is interactive and the verifier lator wanta te prove its existence to a judge: Tn iden-
tiSeation achemes H can create a credible franscript of an imaginary comcunication by carefully
chousing bolh the questicns and the amswers In the dlaleg, while In zignature schemes only real
commurication with A could gererate a credible transrips, However, in many commercial and
military applications Lhe main problem is to deseet forgeries in real time and to deny the service,

AAL Ddlyrba (Bl ke Addvaces i Dryptodogy « CEY PO 86 NS J08 gy 186194 1KY
© Spange«Verlng Baln Hedelbeg 1957

___W

Fiat Shamir Heuristic

Public coin ZK can be
made non-interactive

Imple idea: P can choose

the challenge itself

response

27

commitment

Cryptographic hash function
e.g. SHA 256
Formally, a random oracle

challenge = H{commitment



Why can’t we simulate G?

G can encrypt each gate freely

Garbler E has no way to tell if gate it
correctly garbled

Enc(Kc(l), Enc(K?, Kg))
Enc(K), Enc(K}, K?))
Enc(K;, Enc(K?, Kg))
Enc(K;, Enc(K., Kcl))

28



Cut and Choose
an
~ l -

Evaluator
If all opened GC are
well-formed, parties
continue

Garbler

Qﬂﬂ




Doubly authenticated multiplication triples

A S (0.1} e {0,1}1

Garbled Circuit l

Set E’s input
Garble ‘ ’
| Set G’s input I

Evaluate




Main Memory

Oblivious RAM Protocol
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Path Invariant: Each
node Is assigned a
uniformly random leaf

C

Logical

address Leal
0 10
1 5
2 7

Position Map



ORAM Lower Bound

Natural question: How low can we go in terms of overhead?

Yes, There is an Oblivious RAM Lower Bound!

.

Kasper Green Larsen* and Jesper Buus Nielsen®

Fact (informal): Any secure ORAM must
2 Gomputer Seionce & DIGIT, Aarhus University in cur ov erh eq d at I eq St Q (1 O g n)

Abstract. An Oblivious RAM (ORAM) introduced by Goldreich and

Ostrovsky [JACM'96] is a (possibly randomized) RAM, for which the

memory access pattern reveals no information about the operations per-

formed. The main performance metric of an ORAM is the bandwidth .

overhead, i.e., the multiplicative factor extra memory blocks that must n
be accessed to hide the operation sequence. In their seminal paper in- C O I I I b I n eS tWO CO n Ce pts -
troducing the ORAM, Goldreich and Ostrovsky proved an amortized

2(lgn) bandwidth overhead lower bound for ORAMs with memory size
n. Their lower bound is very strong in the sense that it applies to the

* All access patterns should look the

However, as pointed out by Boyle and Naor [ITCS'16] in the paper “Is

there an oblivious RAM lower bound?””, there are two caveats with the

lower bound of Goldreich and Ostrovsky: (1) it only applies to “balls r T ]

in bins” algorithms, i.e., algorithms where the ORAM may only shuffle Sa e O e Se rve r

blocks around and not apply any sophisticated encoding of the data,

and (2), it only applies to statistically secure constructions. Boyle and . .

Naor showed that removing the “balls in bins" assumption would result

e (Certaln access patterns will force the
problem in circuit complexity. As a way to circumventing this barrier,

they also proposed a notion of an “online” ORAM, which is an ORAM
that remains secure even if the operations arrive in an online manner,

client to save its data on the server,

Our contribution is an f2(lg n) lower bound on the bandwidth overhead

of any online ORAM, even if we require only computational security and . .

allow arbitrary representations of data, thus greatly strengthening the

lower bound of Goldreich and Ostrovsky in the online setting, Our lower t h e n ret rI eve It I at e r
bound applies to ORAMs with memory size n and any word size r > 1.

The bound therefore asvmptotically matches the known unper bounds



OT Extension

In MPC (e.g., GMW), we need lots of short OTs
Can we turn a few OTs into a lot of OTs?

)

Public key Symmetric key

A base OTs n extended OTs



r

Correlated OT




Distributed Point Function

Eval( £, oint,(i, -
fr— s i ' O(l )I T

/ N

/ Gen ® S -

\ Eval(f;, x) /

fi ———— /i)

0O otherwise
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Private Information Retrieval
A0
! <
N —
— )
:2 —
n—1

=) <
=hE}

Client wishes to privately
query one element from a
large database



~ A - log n bits

1 record

~ A - logn bits

1 record
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pecial case of MP

Efficient Circuit-based PSI via Cuckoo Hashing

Benny Pinkas', Thomas Schneider?, Christian Weinert?, and Udi Wieder®
' Bar-lIlan University
benny@pinkas.net
Y TU Darmstadt
{thomas.schneider,christian.veinert}@crisp-da.de
' VMware Research
udi .vieder@gmail . com

“Just use MPC”

Abstract. While there has been a lot of progress in designing efficient

custom protocols for computing Private Set Intersection (PSI), there - - .
has been less research on using generic Multi-Party Computation (MPC)

intersection functionality that are not addressed by the existing custom ’

PSI solutions and are easy to compute with generic MPC protocols

(e.g., comparing the cardinality of the intersection with a threshold or
measuring ad conversion rates). C aS e We C a n O p e O r

Generic PSI protocols work over circuits that compute the intersection.
For sets of size n, the best known circuit constructions conduct O(n logn)

or O(nlogn/loglogn) comparisons (Huang et al.,, NDSS'12 and Pinkas
et al., USENIX Security’15). In this work, we propose new circuit-based I I I l | ‘ I I I O re e I ‘ I e I l ‘
protocols for computing variants of the infersection with an almost linear

number of comparisons, Our constructions are based on new variants of

Cuckoo hashing in two dimensions.

We present an asymptotically efficient protocol as well as a protocol

with better concrete efficiency. For the latter protocol, we determine the

required sizes of tables and circuits experimentally, and show that the

run-time is concretely better than that of existing constructions, 40
The protocol can be extended to a larger number of parties. The proof

technique presented in the full version for analvzing Cuckoo hashing in
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X0

X1

X2

X3

X4

X5

Batched Oblivious PRF

Essentially batched 1-out-of-N OT

F(ko,
F(k1,
F(k2,
F(k3,
F(ké&,

F(k5,

X0)
x1)
x2)
x3)
X4 )

X5 )

kO
k1
k2
k3
K4

k5




A B
C C
D D
F E

F(k87C) . k8
. k9

F(ko,B) F(k2,B) F(k1,C) F(k8,C) F(k4,D) ..
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Setting General-Purpose Tools
GMW Protocol
Multi-party

Semi-honest Security

Multi-round
Malicious Security

Garbled Circuit

Zero Knowledge Constant Round
Two Party
Primitives

Oblivious Transfer
Pseudorandom generators/functions/encryption
Commitments

ORAM
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Secure Computation
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Cryptography

Secure Computation
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Computer Science

Cryptography

Secure Computation
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